

電力見える化から始める節電・省エネ対策

『IoT電力センサユニット』

2023/9/22

株式会社リョーサン

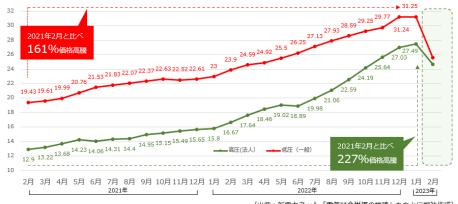
- 1. なぜいま、省エネシステムが必要なのか?
- 2. 電力見える化のポイント
- 3. IoT電力センサユニットとは

なぜいま、省エネシステムが必要なのか?

これからは「使用量削減」の時代へ

最近の電気料金の値上げは大きな社会問題となっています。再エネ賦課金の上昇や燃料費調整単価の上昇、国内の電力供給不足などが要因です。政府は2023年1月に「電気・ガス価格激変緩和対策事業」を実施しましたが、支援終了後に再び値上がりが予想されます。

さらに、CO₂排出量に応じた課税制度である「炭素税」が導入される可能性もあり、 電気料金の上昇に拍車がかかる懸念も存在します。今後は単なる契約の変更では なく、電力の使用料削減が重要なポイントとなります。


SDGsに企業が取り組むメリット

SDGsに取り組むことで企業は、取引先や金融機関、投資家などのステークホルダーから高い評価を受ける傾向が世界的に強まっています。同様に、消費者も自社の利益のみを追求する企業の製品・サービスではなく、社会に配慮した製品・サービスを選ぶ傾向が増えています。

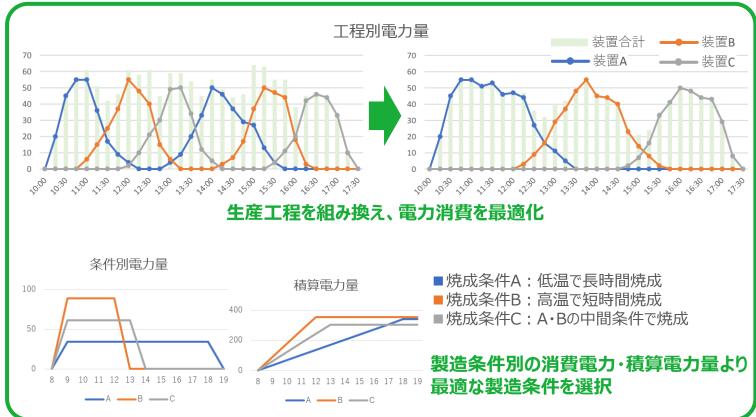
SDGsへの取り組みにより、企業の価値が向上し、ステークホルダーからの評価を高め、企業自体や製品・サービスに対する信用・支持を獲得することが可能になります。その結果、売り上げや資金調達、取引先の確保など、さまざまな利益を得ることができるでしょう。また、社会課題の解決は、企業経営の持続可能性(サステナビリティ)を高めることにもつながります。

高圧·低圧電気代推移(全国平均·円/kwh)

電気・ガス価格激変緩和対策事業開始 2023年9月まで

(出典:新電力ネット「電気料金単価の推移」をもとに弊社作成

電力見える化のポイント


1. 装置ごとの電力消費量を見える化

総量だけでなく、製造ライン・装置/機器の電力消費量の見える化を実現

- 分電盤・装置単位でセンサを設置することで、**エリア・製造ライン・製造装置ごとの電力測定**を実施
 - → ライン・装置の**稼働状況による電力消費の変化**を捉えることが可能となり、**工程見直し**にも役立ちます

<設置例> キュービクル 積算電力計 分電盤 ユーティリティ関係 製造ライン 製造装置

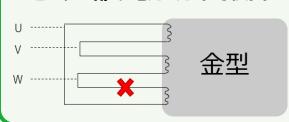
<測定結果>



2. 有効電力を見える化

有効電力を見える化することで、より正確な消費電力を把握

- **力率検出機能搭載電力センサ**を使用することで、有効電力の見える化が可能
 - ⇒ 有効電力・無効電力を正しく把握することで、無効電力対策を検討することが可能となります 無効電力を伴うライン・装置/機器に対して力率改善を行うことで、電力消費量を削減出来ます


	電流 (実測)	力率	電圧(固定)	電力	
簡易電力計	3A	1(固定)	200V	<u>600W</u>	➡ 15%の差異が発生
電力センサ	3A	0.85(実測)	200V	<u>510W</u>	

3. 装置の稼働状態を見える化

常態監視することで、消費電力削減や装置トラブル防止に貢献

- 常時モニタリングすることで、装置の異常動作(異常な電力変動)を発見可能
 - ➡ 早期の異常発見で、装置トラブル・生産への影響を未然に防ぎます
 - ➡ モニタリングとAIを組み合わせることで、異常動作の自動検出も可能となります
- リアルタイムに装置の状態を監視することで、電源消し忘れなど人為的なミスも早期に発見
 - ➡ 確実な電源OFFを実現し、消費電力を削減出来ます
 - 金型での成形工程でヒーター3カ所の内、1カ所が切れてしまった
 - 通常→金型は残り2つのヒーターにより温度はゆっくり下がる加熱時も2つのヒーターで動かすを温度が十分上がらない
 - → ヒーター部の電力・力率で検出

- ・ 装置ごとの稼働時の消費電力推移 をAIで学習
- → 通常と異なる稼働状態を検出し、 アラートを上げることで、異常状態 を早期に検出
- 装置の故障予兆など、異常時の状態もAIで学習
- ⇒ 故障の予兆検出、予知保全が可能

※AIは別途準備する必要があります

- 夜間・早朝にOとなるべき機器の消費電力が待機電力の状態で検出された
- ⇒ リアルタイムモニタリングで、時間と 消費電力の相関を監視

装置の電源消し忘れを確実に検 出することで省エネを実現

IoT電力センサとは

1. IoT電力センサの概要

株式会社SIRC製 IoT電力センサユニット

- ・ 世界初!非接触式 電力センサユニット
 - ▶ データ自動取得、有効電力の見える化、稼働状況の遠隔感を実現

• 製品特徴

▶ 開閉式センサヘッド

- ✓ 非接触で電力測定を実現(世界初)
- ✓ 電線に後付け可能 (電気工事不要)

> 超小型軽量

✓ コアレスの電力センサで小型軽量を実現

> 低消費電力制御通信ユニット

- ✓ Bluetoothでデータを送信
- ✓ 無線なので面倒な配線工事は不要
- ✓ 電池寿命 約3年を実現

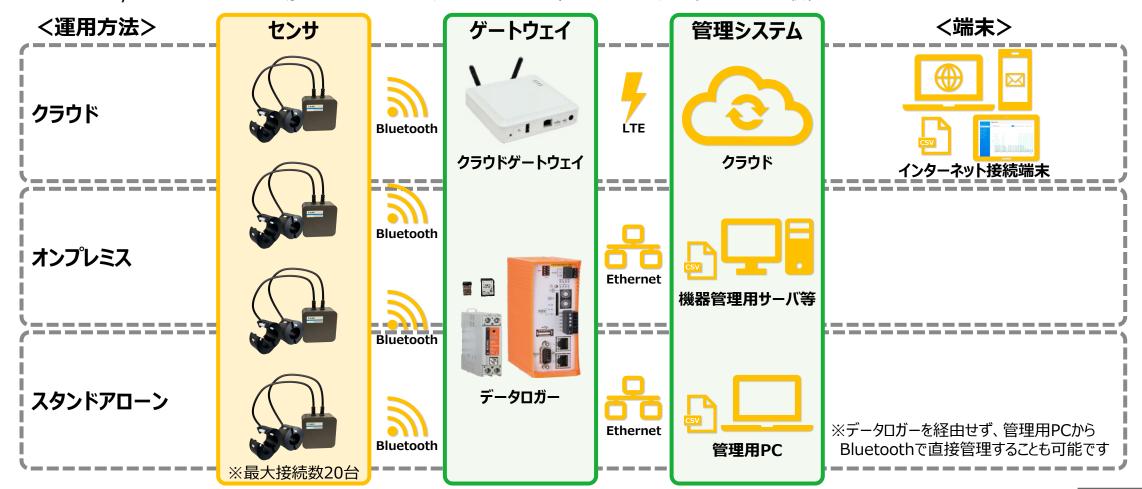
ヘッドを開いて、三相3線の何れか2本に取り付けるだけ

小型ヘッドで容易な取り回し

電池駆動で無線接続配線工事は不要

2. 製品仕様

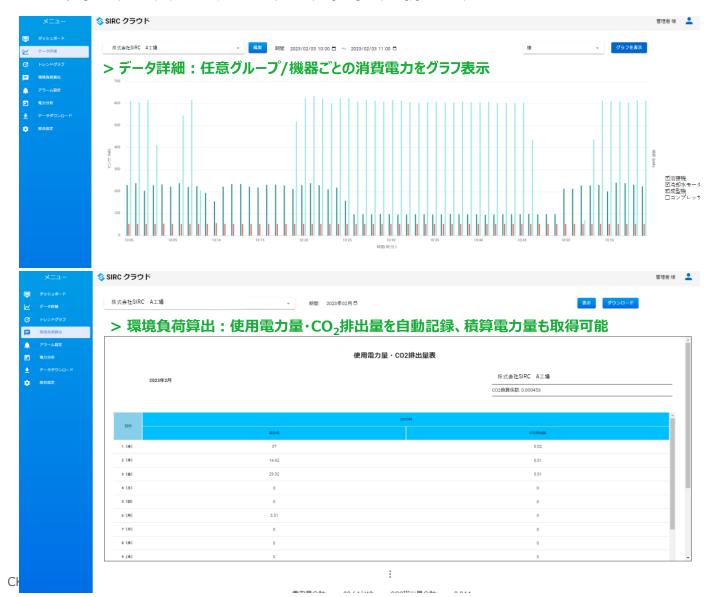
項目		備考			
型名	DDS33-0903P	DDS33-1510P	DDS33-2520P	DDS33-3530P	
センサロ径	Ф9.6mm	Ф15mm	Ф25mm	Ф35mm	
IVケーブル(参考値)	5.5~22sq	38~60sq	100~200sq	250~325sq	JISC3307
電流レンジ	0~30A	0~100A	0~200A	0~300A	ゼロカット電流 1.5% of FS
電圧レンジ		200V			
測定対象		AC三相3線式			
計測項目	積算電力量 / 有効電力 / 皮相電力 ^{※1}				
測定間隔/通信間隔		10秒			
電力レンジ		電流レンジン	AC電圧はSW切替		
測定精度(目安)	±3% of F	S (25℃, 50Hz/60Hz•/	センサヘッド中心に非測定電線が通る場合		
通信仕様		Blue	見通し距離 約100m		
電池寿命(目安)	約3年(常温 20℃)				通信間隔約10秒の場合※2
使用電池	リチウム電池 CR-123A ×2個				
センサヘッドサイズ(外形)	Ф43mm, H=37mm	Ф43mm, H=37mm	Ф49mm, H=37mm	Ф65mm, H=37mm	突起部を除く
制御通信ユニットサイズ		80 × 80	突起部を除く, ケーブル長 350mm		
重量:センサヘッド部	約75g ×2個	約75g ×2個	約90g ×2個	約130g ×2個	
重量:制御通信ユニット部		約1	電池を含む		
使用周囲温度/湿度		-10~50℃ /	氷結・結露無きこと		
保存温度	-10~60℃				氷結・結露無きこと


^{※1} 力率は電力(有効/皮相)から算出します。電流の実効値は電力(皮相)、電圧レンジから算出します。 ※2 Panasonic製(産業用)使用

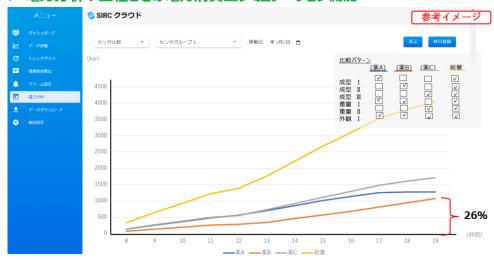
3. システム構成例

クラウドからスタンドアローン動作まで多様な構成を実現

- ・ クラウド利用の場合、クラウド上のデータ処理により**トレンドグラフを閲覧**可能、異常値を検出した場合はメール通知でお知らせ
- オンプレミス/スタンドアローンの場合、データロガーからEthernet経由でCSV形式のデータを取得



ゲートウェイ	データロガー	備考
クラウド / WEBサーバ機能	WEBサーバ機能	WEBブラウザでアクセス・操作
LTE(無指向性ダイポールアンテナ付属)	(無指向性ダイポールアンテナ付属) Ethernet	
Bluetooth LE 5.0	Bluetooth LE 4.0 (専用ドングル使用)	
最大20台	最大20台	
_	1秒 × 45日 / 10秒 × 450日 (専用SDカード使用)	
-10~50℃ / 35~85%Rh	-10~50℃ / 10~90%Rh	結露無きこと
DC 12V	DC 24V	専用ACアダプタ付属
最大 5W	最大 7.2W [※]	
D91 × W108 × H30mm	D 94.7 × W44.7 × H124.8mm *	アンテナ部・突起部除く
約130g	約300g	
91mm 30mm	94.7mm	※本体部の
	クラウド / WEBサーバ機能 LTE (無指向性ダイポールアンテナ付属) Bluetooth LE 5.0 最大20台10~50℃ / 35~85%Rh DC 12V 最大 5W D91 × W108 × H30mm 約130g	クラウド / WEBサーバ機能 LTE (無指向性ダイボールアンテナ付属) Bluetooth LE 5.0 Bluetooth LE 4.0 (専用ドングル使用) 最大20台 - 1秒 × 45日 / 10秒 × 450日 (専用SDカード使用) -10~50℃ / 35~85%Rh -10~50℃ / 10~90%Rh DC 12V 最大 5W 最大 7.2W* D91 × W108 × H30mm が30mm り91mm D 94.7 × W44.7 × H124.8mm * が300g



5. クラウド画面

クラウドのデータ処理機能でデータ収集・分析・シミュレーションまで対応

> 電力分析: 工程ごとの電力消費量シミュレーション機能

6. 用途例①

カーボンニュートラルへの取り組み

• 課題:取引先より製品1個あたりのCO2排出量提示依頼あり

対応

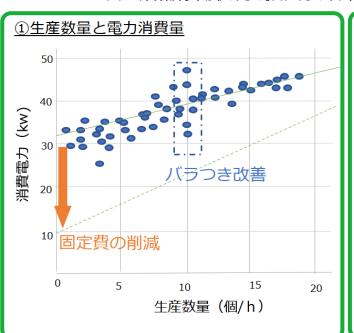
▶ 各ライン、各装置ごとに電力センサを設置し、製品1個あたりの電力使用量を算出

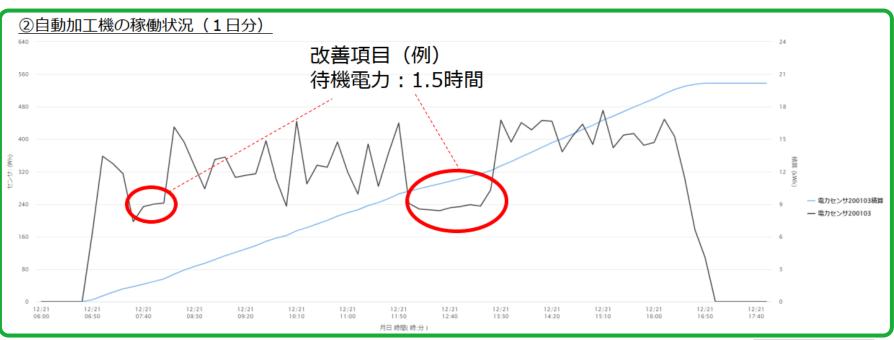
設置場所① キュービクル

設置場所② 分電盤 … ラインごとに配置

設置場所③ 各装置

▶ クラウド機能により、CO₂排出量へ自動変換


電力センサとクラウドで CO_2 排出量を自動算出

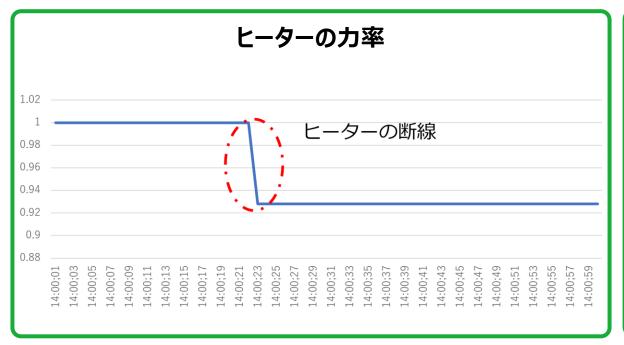


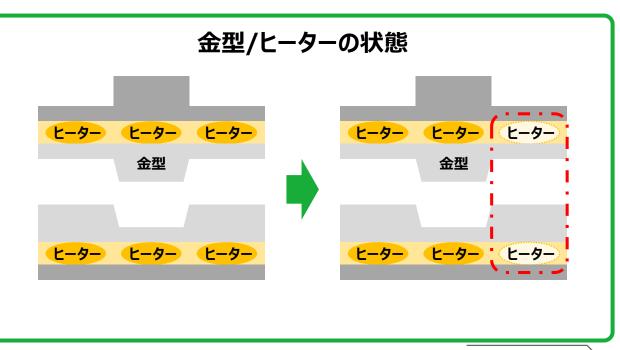
6. 用途例②

稼働状況監視、休憩時間・夜間の設備稼働状況把握・改善

- 課題:作業報告書のみで改善の指標となるデータがない
- 対応
 - 各設備に電力センサを設置し、消費電力量を計測
 - ⇒ 消費電力量と生産数量の相関を確認 ⇒ 生産数量に対して消費電力にバラつきがあることを発見
 - ▶ 1日の設備稼働状況を抽出し、非稼働時の消費電力量を確認 ➡ 非稼働時に待機電力が発生していることを確認

ムダな待機電力を削減して


省エネを実現


6. 用途例③

成形工程における歩留まり悪化の原因究明

課題:金型温度に異常はなく、原因究明の手立てなし

- 対応
 - ▶ 加工機に電力センサを設置
 - か加工機の消費電力・力率に異常がないか確認 → 力率の異常より、ヒーターの断線を発見
 - ※ファンやポンプに使われている誘導モータの欠相運転検知にも利用可能

16

- ・ 小型軽量・簡単設置・無線接続のIoT電力センサは、キュービクル/分電盤/各装置に取り付け可能
- 1秒/10秒間隔でデータを自動取得
- 消費電力・有効電力・稼働状況を見える化

- 簡単に状態確認が可能なWEBサーバ機能
- ラインごとの管理を実現するグループ設定機能
- カーボンニュートラルの要求に応えるCO₂算出機能

簡単・容易に電力見える化が始められます

見える化開始~見える化後の対応まで、お気軽にご相談下さい

エンジニアによりそうマガジンサイトはこちらから。

https://techlabo.ryosan.co.jp/

お問い合わせはこちらからお願いします。

https://techlabo.ryosan.co.jp/contact/

